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A Boltzmann equation technique is used to calculate the magnetic field dependence of sound, amplified 
by interaction with conduction electrons in the presence of crossed dc electric and magnetic fields. It is 
shown that both geometric resonances and cyclotron resonances can be found under conditions of amplifica­
tion. This occurs when the electron-drift velocity in the crossed fields, VH, has a component in the direction 
of propagation of sound which exceeds the sound velocity vs. The geometric resonances occur under the 
same conditions as in zero electric field, but the cyclotron resonances are Doppler shifted and occur for 
co — q • Vi/= wcoc. 

I. INTRODUCTION 

RECENT experiments1-3 have indicated that ampli­
fication of sound is possible in semiconductors and 

semimetals, whenever the drift velocity of the conduc­
tion electrons in external fields exceeds the velocity of 
sound. When we have a dc electric field acting alone, 
the drift velocity is Yd— — (£r/m)E, while in crossed 
electric and magnetic fields, the electron drift velocity 
isyH=c(EXH)/H2. 

A complete theoretical treatment of the amplification 
in zero dc magnetic field has been given which accounts 
for the major experimental features of the amplifica­
tion.4-5 In the case of finite magnetic field, however, the 
calculations have been limited to treating the problem 
in the high-field limit. Dumke and Haering6 and Hop-
field7 have given phenomenological treatments of the 
amplification of sound in semimetals and the author8 

has given a like treatment of the amplification in ex­
trinsic semiconductors for crossed electric and magnetic 
fields. Eckstein9 has calculated the amplification in the 
high-field limit as a function of the angle between the 
drift velocity and the direction of propagation using the 
Boltzmann equation. However, none of these treat­
ments are valid in the magnetic-field region where 
geometric resonances and cyclotron resonances occur. 
It is, therefore, of interest to examine the whole problem 
of the electron-sound-wave interaction in crossed elec­
tric and magnetic fields using a Boltzmann equation 
treatment which is valid for all magnetic fields in the 
semiclassical limit. 

In Sec. II, we use the model of a free-electron gas 
developed by Cohen, Harrison, and Harrison10 for the 
conduction electrons in a solid, and in general, adopt 
the formalism used by them. We shall only treat the 

1 A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev. 
Letters 7, 237 (1961). 

2 L. Esaki, Phys. Rev. Letters 8, 4 (1962). 
3 R. W. Smith, Phys. Rev. Letters 9, 87 (1962). 
4 G. Weinreich, Phys. Rev. 104, 321 (1956). 
6 H . N. Spector, Phys. Rev. 127, 1084 (1962). 
6 W. P. Dumke and R. R. Haering, Phvs. Rev. 126, 1974 (1962). 
7 J- J- Hopfield, Phys. Rev. Letters 8,311 (1962). 
8 H . N. Spector, Phys. Rev. 130, 910 (1963). 
9 S. Eckstein (to be published). 
10 M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. 

117, 937 (1960). 

case of propagation transverse to the external electric 
and magnetic fields. It is in this case that geometric 
resonances11'12 and cyclotron resonances13 have been 
observed in the attenuation. In Sec. I l l , we consider the 
case of geometric resonances and in Sec. IV, the case of 
cyclotron resonance. In our concluding section, Sec. V, 
we give a discussion of the results of our calculation. 

II. FORMAL THEORY 

A. Constitutive Equation 

In the model developed by Cohen, Harrison, and 
Harrison,10 the conduction electrons are replaced by 
the model of a free-electron gas of density No. The sound 
wave of wave vector q and frequency co manifests itself 
as a velocity field, u <* expi(q-t—o)t), in the background. 
If we are considering the case of a metal or an extrinsic 
semiconductor, the electron gas is neutralized by a 
positive background of the same density No* For a 
semimetal, the background is neutral, and the electrons 
are neutralized in the absence of the sound wave by an 
equal number of holes.14 The formalism developed here 
can be applied, with some modifications, to either model. 
The interaction between the electron (and hole) gas 
and the sound wave can be represented partly by means 
of a self-consistent internal electromagnetic field and 
partly by means of a deformation potential. The self-
consistent electromagnetic field induced by the passage 
of the sound wave can be derived from Maxwell's 
equations. In our case, the latter can be written in the 
form 

J=-<70B-S, (2.1) 

where J and £ are the total current and electric field 
accompanying the sound wave and B is the diagonal 
tensor, 

B=»D3l-G8+7)#]. (2.2) 

Here, q is a unit vector in the direction of propagation, 
11 R. W. Morse, H. V. Bohm, and J. D. Gavenda, Phys. Rev. 109, 

1394 (1958). 
12 D. H. Reneker, Phys. Rev. 115, 303 (1959). 
13 B. W. Roberts, Phys. Rev. Letters 6, 453 (1961). 
14 M. J. Harrison, Phys. Rev. 119, 1260 (1960). 
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(To is the dc conductivity, 7—co/oop
2r, p—(c/vs)2y, and 

o)p is the plasma frequency of the electrons. 
The electronic current can be obtained from the dis­

tribution function in the usual manner; 

h 
• / • 

dvvf, (2.3) 

where j e is the total electronic current. The Boltzmann 
equation from which the distribution function is de­
termined in the presence of external electric and mag­
netic field is 

v X H \ df ( / - / . ) dj dj e ( v X l i \ dj 

dt dr m\ c J dv 
(2.4) 

and Epit^t) is the Fermi energy chosen to give the cor­
rect electron density. 

When we are considering the case of a semimetal, we 
have an equation for the hole distribution function 
which is identical to (2.4) except that we replace e by 
— e and the values of the electron mass, relaxation time, 
and deformation potential by those for the holes. In 
the following treatment, we shall assume that the 
masses, relaxation time, and deformation potentials 
for the holes and the electrons are equal. I t has been 
shown elsewhere15 that this assumption should not 
qualitatively effect our final results. 

I t has been shown that the Boltzmann equation can 
be solved by a method due to Chambers.16 This solu­
tion is 

In (2.4), E is the dc electric field, H is the dc magnetic 
field, 8s~ S—iqq-(C-u/eoo) is the effective electro­
magnetic field arising from the passage of the sound 
wave, and C is the deformation potential tensor. The 
distribution function relaxes, in the presence of the 
sound wave, to an equilibrium distribution which is 
centered about the impurity velocity. Also, scattering 
is local and cannot change the electron density. 
Therefore, 

/ . ( r , v , 0 = / o ( v - u ( r , 0 , £ F ( r , 0 ) , (2.5) 

where /O(V,J5F) is the equilibrium Fermi distribution, 

«/ — < 
/ ( ' , V ) = f*(r'y/)e r~(.t-t>)lT_ (2.6) 

Expanding the distribution function to first order in 
E, u, and terms proportional to u, and keeping terms 
that are of first order in both E and u, we have 

/ = / o + / 1 ° + / i 1 . (2.7) 

Here /o is the unperturbed distribution function, /i° is 
that part of the perturbed distribution function that is 
independent of the sound wave, and fi1 is that part of 
the perturbed distribution function which varies as 
expi(q-r—cot). Thus, we obtain 

dfo mvHo)cT 

d £ l + ( c o c r ) 2 
(2.8a) 

/ i 1 - " dt' e-{t-t,)lr -e[ £ 
er I 

H m\H- (v—v) 
NorJLdE dE2 

1 + ( « C T ) S 

e dfo a2/o 

m dE BE2 
(2.8b) 

where \H = C(EXH/H2) is the drift velocity of the electrons in the crossed electric and magnetic fields. We have 
chosen our y axis to be in the direction of E and the z axis to be in the direction of H. From (2.3), we see that (2.8a) 
will only contribute to the dc current and, thus, can be neglected in considering the electron-sound-wave interaction. 
The electronic current which is proportional to the sound wave can be obtained from (2.3) and (2.8b). The desired 
constitutive equation is . 

j e = < H S s J~R7ViCT8+S;8 s , (2.9) 

where 

cr=— e2 J dvv 

2 EFQ 
R= 

dt'&V'W 
j -d/o &fi 

.dE dE2 
•m\H - ( v '-v)], 

3N0v8 

dvvf dt'eh«'n-
df0d

2f0 -1 

dE dE2 

e2vHoycr f f< r df0 d2f0 1 
= dvv dtfeW)\ (a)cTX+i/) 1 mv'(<ticrOx'-Vy') , 

1+(UCT)2J 7-00 L dE dE2 J l+(w c r> 

A(O=Cq-(r/-r)-w(^-0]+(^~0A. 

(2.10a) 

(2.10b) 

(2.10c) 

" H. N. Spector, Phys. Rev. 125, 1192 (1962). 
16 R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952); A238, 344 (1957). 
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The equation of continuity relates the nonuniform 
part of the electron density Ni to the current along the 
direction of propagation; i.e., q]~~N\evs. Denning 
a tensor R by means of the relation 

R j e = R g j e , (2.11) 

we can rewrite (2.9) in the form 

je=ero<r'(Ss- (mu/er))+(ro^f• 6., (2.12) 
where 

<r'=[I-R]->(<rAo), S ' = [ I - R ] - ' ( £ A o ) . (2.13) 

If we have holes present as in a semimetal, then we can 
write an identical constitutive equation for the holes 
with e replacing — e everywhere in (2.10) and (2.12). 

B. The Absorption Coefficient 

The quantity of interest experimentally in studying 
the interaction between the sound wave and the elec­
trons is the absorption (or amplification) coefficient a. 
This coefficient gives the exponential decay (or growth) 
of sound intensity with distance. The absorption coeffi­
cient is the average power density transferred between 
the sound wave and the electrons (or holes) per unit 
energy flux, or 

a=Q/hW\H8, (2.14) 

where p is the density of the material. 
In a semimetal, the net power transferred per unit 

volume is 

f iV0wu* 
0 = * R e j.*-8.«+j»*-S.* «Ve)-u) 

I Te 

Notnu* I 
— ' «n>-n ) , (2.15) 

Th J 

where the subscript e denotes quantities associated 
with the electrons and h denotes those associated with 
the holes. The self-consistent electric field arising from 
the electron and hole currents is 

- ( roB-£=J 6+J*. (2.16) 

Using (2.15) and (2.16) together with the constitutive 
Eq. (2.12), one can now calculate a for a semimetal. 
For semimetals, the forces arising from the deformation 
potential dominate the electrostatic forces for sound 
frequencies greater than a megacycle. In fact, it is only 
in the region where the deformation forces are strong, 
that we have appreciable interaction between the sound 
wave and the conduction electrons in materials with 
low-carrier densities such as semimetals and semi­
conductors.17 When the deformation forces do dominate 

17 Another case where the interaction between the sound wave 
and the electrons can be quite large, even when the carrier densi­
ties are low, occurs when there is a large piezoelectric effect as 
inCdS. 

the interaction, we find 

a = (2N0m/pvs) (q• C • j u / W ) V r Re£• (cr'+ 2') • q, 
(2.17) 

where jit is a unit vector in the direction of polarization 
of the sound wave. 

In an extrinsic semiconductor, the net power trans­
ferred per unit volume is 

( ? = | Re[Je*- S.+ (wu*/«r)(J.+iVroOT)]. (2.18) 

The self-consistent field arising from Maxwell's equa­
tions in this case is 

-aoB-E=Je+NQeu. (2.19) 

Substituting (2.12) and (2.19) into (2.18), we can now 
obtain a for an extrinsic semiconductor. Here, too, the 
interaction is appreciable only when there are strong 
deformation forces acting.18 In this case we have 

a = ( ) ( —) ReKa '+S '+B]- 1 . *? . (2.20) 
pv8r \ mvs

2 I \up/ 

Because 8>1 in extrinsic semiconductors for frequen­
cies greater than 1 Mc/sec, we need calculate only the 
diagonal component of the conductivity tensors in the 
direction of propagation to determine a in both semi­
conductors19 and in semimetals. 

C. The Conductivity Tensor 

The coefficient of absorption is now specified in terms 
of the conductivity tensors </ and 2 ' . The present task is 
to evaluate explicitly the integral expressions (2.10a)-
(2.10c). We first note that for arbitrary g(\) 

r l df0\ S No r 
dv( Wv) = / <K2g(v,), (2.21a) 

J \ dEJ STTEF
0J 

r ( a2/o\ 3 No d 
/ dv )g(v)= v 

J \ dE
2J 8TT EF°mvP

2 dv 

x U ^ ( v ) | ^ , (2.21b) 

so that g(\) need only be evaluated for v=vF. 
We also note that in the expressions for the absorp­

tion coefficient (2.17) and (2.20), OP and 2 occur only 
in the combination T = c r + 2 , T / = o? /+2 /. Since we 
are interested primarily in phenomena which occur 
when the electrons can go along an orbit several times 

18 H . N . Spector, Phys. Rev. 125, 1880 (1962). 
19 This can be seen by writing out the tensor appearing in (2.20). 

We have 

[«T'+S'+ H i . -*" , , , \ , , . , 
<rXx -T2JXX —ty-tA 

where A=z{<TXy-\-yLXy){cryX'-{-yLyZ')/(jyy-\-'Zyy-\-ikl and we chose 
the x axis to be in the q direction. When |8>>1, A is negligible com­
pared to the other term in the denominator. 



M A G N E T I C F I E L D D E P E N D E N C E O F A M P L I F I C A T I O N O F S O U N D 2515 

before being scattered, we can use the condition «07v2>l 
in evaluating the expression for the tensor T . 

We choose a coordinate system having the x axis 

This was done by noting that 

+00 +co 

E gn(x)=l, E Jm(XvH/vF)=l, 
n=—oo m=—oo 

and 
+00 

E mJm (XVH/VF) = XVH/VF . 
m=—oo 

The latter two relations are derived in the Appendix. 
I t now only remains to evaluate (2.24) in the regions of 
interest and to calculate the absorption coefficient a. 

III. GEOMETRIC RESONANCES 

>r 'We expect geometric resonances to occur when the 
phonon wavelength is of the order of the classical orbit 

in the direction of q, the y axis in the direction of E, 
and the z axis in the direction of H. In this coordinate 
system, the relation between (r,v) and (r',v') is 

radius, i.e., when X is of order unity. In this case, coc is 
greater than o> (by a factor of order VF/VS), X(VH/VF)<&1, 
and if in addition |cocr/X|^>l, we obtain for the con­
ductivity tensors 

r ^ { x C 1 - S o ( x ) ] 

r (1 -WOT) / „ ' (2X) -n 

-;«?zUi-gl(x)+ Y~\\' {3A) 

1 f iqv HTf J 0'(2X) -11 

icori X L X J ] 

Vz=Vi COS[o)c(t
f—t)+<t)2 — VH COSC0c(^--/) + *>#, 

Vy—Vi. sin[coc(/'—/)+<£]—vH sina>c(/'—/), 

x' = x-\—{sin[co«(^-0+*]-sin^} sincoc(t '+t)+vH(t '-t) , (2.22) 

Vi VH 

y'—y {cos[coc(/ /+/)+0]—cos0} [l—coscoc (£'—/)], 

z' = Z+Vn(t'-t), 

where o)c=eH/mc is the cyclotron frequency and 9 and <t> are the polar angles of v. 
The integrals that occur in the expressions for the conductivity tensor are evaluated explicitly in the Appendix. 

Using the results of the Appendix, we find the following expressions for the components of T and R : 

3trof VH 1 +00 Jm(XVH/VF)r VH 11 
Txx=—\ + - E (X»«n)/(X) ( l - * W ) / 2 n ' ( 2 X ) 

iql\ VF X n,m=-oo\-{-i(n—m)cocTL VF -I J 
(2.23) 

iql { VF X n,w=-oo \-\-i(n—m)o)cTL 

coc +00 Jm(XVH/VF)i VH 
Rx=- E : \ngn{X) J*«'(2X) 

where X=qVp/o)c, X= 1—ico^r, and II=1—VH/VS* In deriving (2.23), we have dropped terms that are smaller by 
a factor of the order of (VS/VF)2 and (VH/VF)2 than the remaining terms. In semimetals and degenerate semicon­
ductors, the ratio of the sound velocity to the Fermi velocity is of order 10~2. The ratio VH/VF is also much less 
than unity for all attainable electric fields in conducting solids. In any case, our linear Boltzmann equation treat­
ment would no longer be valid if the drift velocity of the electrons became larger than the Fermi velocity. The 
functions gn(X) are those defined by Cohen, Harrison, and Harrison10 in their paper. 

The expressions (2.23) can be rewritten in the form 

Sa0 f -HO ( / w XFi , /F F ) [ (X-^mco c T)Xg n (X)+^FHr( l - i cor ) ( / 2 n yX)(2X)] l 
Txx= -iqVHr+\- E ; , (2.24) 

(ql)2i n,m=~oo \+i(n—m)<aeT J 

1 ( +00 Jm(XVH/VF)L(\-imwcT)gn(X)+iqVHT(J2n'/X)(2X)l 

itoT ln,m=-oo \-\-i{fl—m)o)cT 
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where the subscript j denotes the direction of polariza­
tion. Therefore, we see that we have amplification of 
the sound wave instead of attenuation whenever VH ex­
ceeds vs. We also note that we have maxima in the 
amplification and the attenuation at fields such that 

VH D - S o ( X ) ] 
• — = 1 ± — — : 

vs . cor 
(3.5) 

0.5 1.0 1.5 2.0 2.5 

where the upper sign corresponds to amplification and 
the lower to attenuation. The value of the absorption 
coefficient at these maxima is 

3N0mo)/C /Cxj\
2/vsv 

\mvs
2/ \VF/ 

go(X), (3.6) 
FIG. 1. The ratio of the absorption coefficient at finite dc electric pvs \mvs

2/ \VF/ 
field to that at zero field is shown as a function of VH/VS for 
X=3, and forWr=0.5 and wr = 5j. Aswr increases, the positions of a n d j s independent of the relaxation time. The value of 

e maxima move ow r ^ e a b s o r pt ion coefficient at these maxima increases 

If the condition | cocr/X | >̂>1 is not satisfied, then terms 
with \n—m\ higher than zero enter. That these terms 
of higher \n—m\ tend to wash out the oscillations can 
be seen from the relation 

and the slow variation of the frequency denominator 
with field in the range where coĉ >co. 

linearly with frequency. As the relaxation time, r, goes 
to infinity, the maxima in both the amplification and 
the attenuation occur at /x=0. The behavior of (3.4) 
as a function of VH/VS is shown in Fig. 1 for X=3 and 
for wr=0.5 and cor=5. 

In the high-field limit, X « l , and we can use the 
following limiting form for go(X): 

g o ( X ) = l - i X V (3.7) 

Using (3.7) in (3.4), we find that the absorption coeffi-
The effective conductivity tensor T ' has the follow- cient of a semimetal in the limit of high magnetic fields is 

ing form under the above conditions: 

3 xD-goPOJ 
(3.2) 

2N0m 

pvs 

M(WCT)2 

mv2J M 2 ( « C T ) 4 + K $ W W . ) 2 
(3.8) 

(^ ) 2 M+Cl-^o(X)] /cor m m 

while the maxima m the absorption coefficient occur 
In obtaining (3.2), we have again dropped a term of when 
order (VH/VF)2, and have used the following relation- vH 1 ql vF 
ship20 between the functions go(X), gi(X), and Jo(2X): 

go(X)+Jo'(2X)/X-gl(X) = Q. (3,3) 

- = 1 ± - -
3 (cocr)

2 vs 

(3.9) 

These results agree with those derived by Dumke and 
Using (3.2) in (2.17), we find the following expression Haering6 and Eckstein9 in the high-field limit. In the 

for the absorption coefficient of a semimetal: l i m i t o f z e r o d c electric field, (3.4) reduces to Harrison's 

6N0m/Cxj\
2^Tfji(vs/vFYg0(X)ll-g0(X)^ ^ ^ A + , • • • A • „ „w 

( z_ \ x ' 5 L 6 (34) For degenerate extrinsic semiconductors, we can ob-
pv A mvs' (a,Mr)2+[l-go(X)]2 tain the absorption coefficient by using (3.2) in (2.20) 

Cx 

1 Nam 
- )•( — U c o M r g o ( X ) [ l - g o ( X ) ] 

6pVs 
Li-go(x)j 

• l/Vf 
l + - ( -

. 3\VS )B'l + (w t̂r)2 l-go(X)+- ( — ) ( -

(3.10) 

Here, we also have amplification whenever vH/vs> 1. The maxima in the absorption coefficient occur at fields 
such that 

VH _ [ l - g o ( X ) ] r 1+UVF/VSYW^ 
-=1±-

WT Ll + M ^ F / ^ ) 2 W " p ) 2 - g o ( X ) J 
(3.11) 

20 This relationship can readily be seen from Eq. (Al) in Ref. 10. 
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where again the upper sign corresponds to amplification and the lower to attenuation. The value of the absorption 
coefficient at the maxima is 

1 
a y = T 

(N0m/PVs)(Cxj/mVs2)2^M2qgo(X) 

l2tl-go(X)+±(VF/Vs)2(W"P)2Tl+HVF/Vsy(a)/up)^ 

and is again independent of the relaxation time. The 
behavior of the absorption with dc electric field is essen­
tially the same as in semimetals. In the high-field limit, 
(3.10)-(3.12) reduce to the expressions previously de­
rived for this case.5 

IV. CYCLOTRON RESONANCE 

In zero dc electric field, we get cyclotron resonance 
effects when the phonon frequency is of the order of 
the cyclotron frequency. When we have a net drift 
velocity along the direction of propagation in the ex­
ternal fields, we expect the frequency at which resonance 
occurs to be Doppler shifted from co to co/x. In these 
circumstances, the frequency denominators in the 
conductivity tensors (2.24) can become small, and the 
possibility of oscillatory behavior arises. Under this 
condition, X will be very large, since X== (y F/v8) (<*>/& c)> 
Thus, it will be convenient to take the asymptotic form 
for the tensors in (2.24). The asymptotic forms for the 
functions gn(X) and J2n

f{2X)/X are10-21 

These expressions are valid only for X>n\ when n 
exceeds X, gn(X) and J2n'(2X) become small. Hence, 
if we take the asymptotic forms for gn(X), etc., in 
evaluating (2.24), we make an error of the form of the 
final term in the following equation: 

4-00 

X 
in(X) 1 +00 

E 
l 

n=_oo \-\-i{n—m)o}cr 2X n—-» X-\-i(n—m)o)cr 

2(\—imo)cT) ~| 

imo)cr)2+ (nwcr)2 J 
[ 1 oo 2(\—imwcr) 

— £ — | . (4.2) 
2X n=x ( \ - ^ c o c r ) 2 + {nucr)2 

gn(xy 

Q2n'(2X)/Xy 

= (1/2X)+0(X-3/2) 

->0(X-v2). 
(4.1) 

.-foo Jm(XVn/VF)(\—imo)cT) +<» / VH\ +00 

L = L Jm(X—)(\-ima>eT) L — : 
m, ?i=—oo 

The last term may be estimated by replacing the sum­
mation by an integration over n, and the term is found 
to be of the order of l/(ql)2, whereas the first term is of 
order 1/ql. We are interested in the case where COT is 
large; hence, ql will be large, and we can retain only 
the first term which may be evaluated directly, noting 
that22 

1 

7T fCOcr 2\7T • <» 1 "1 (1 — io)T) 
= ( 1 - i c o r ) 1 L = —7T coth-

OOCTLTTX cocr P=I (7rX/cocr) + ^27r2J o)cr ( (7rX/wcr)+^2' 

7rX 
I . (4.3) 

We can now obtain the limiting expressions for T and R where 

Txx=(3ao/(ql)2)(l-io>T) 
X [ l - (TTX/2^) coth(irX/wcT)], f 4 4x From (4.7), we can write down the following expressions 

v*# V fnr tVip rppl jinrl-.imjiori'nnrv r»artc of rath (TT\ lr.\ .T\ • 

A+iB= (r/2ql) coth(7rX/cocr). (4.7) 

..JK,= (l/*ur) 

X [ l - (l-tcor)(ir/2g0 coth(7rX/wcr)]. 

The effective conductivity tensor T ' has the form 

Sivsrl— (ir\/2ql) coth(7rX/cocr)' 

pL 1— (TTJ 

for the real and imaginary parts of coth(7rX/ojcr): 

7r tanh(x/cocr) sec2(cojU7r/coc) 
A=-

T ' = • 
•*• XX 

qlvt • {ir/2ql) coth (7TX/COCT) 
(4.5) 

B = -

2ql tanh2(7r/cocr)+tan2(co^7r/wc) 

7r tan(o)ijnr/a)c) sech2 (T/O)CT) 

2ql tanh2 (TT/O)CT) + tan2 (w/x7r/coc) 
in the region of cyclotron resonance. 

Using (4.5) in (2.17), we find that the absorption From (4.6) and (4.8), we see that we have oscillations 
coefficient of a semimetal can be written as m t h e absorption coefficient as long as co cr>l . Since 

2 VA(\ A \ mr\ ^ e s o u n ( ^ frequency has to be of the same order of 
2 I _̂_ i if^\ ^ l ^ ~̂~ -* /A £\ magnitude as the cyclotron frequency, this means^that 

' we require wr>l . ' When this condition is not satis ar~ 
pv8 

11 

razv vF, J (l-A)2+B2 satisfied, 
21 P. M. Morse and H. Feshbach, Methods of Theoretical Physics & E. T. Whittaker and G. N. Watson, A Course of Modem 

(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2, Analysis (Cambridge University Press, New York, 1950), 4th ed., 
p. 1321. p. 136. 
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FIG. 2. The normalized absorption coefficient 2apVs/3Notrnrco 
X {Cxj/mVs*)2(ys/VF)Z is shown as a function of the ratio of the 
sound frequency to the cyclotron frequency. The product of the 
sound frequency and the relaxation time, COT, is taken equal to 
ten and VH/VS is taken equal to three. The positions of the 
maxima are Doppler shifted from their values in zero dc electric 
field. 

the oscillations are damped out. The maxima in the 
coefficient occur whenever o)fx=no)c, so that the positions 
of the cyclotron resonance are Doppler shifted from 
their value in zero electric field. We also see that we get 
amplification whenever VH>VS. 

Since we are interested in the case where ql>l, we 
can neglect A and B with respect to unity, and (4.6) 
reduces to 

3 NoMTO)/ Cx 

2 pvs 

I J —) M Re coth— . (4.9) 
\mvs

2/ \VF/ O)CT 

From (4.9), we see that the amplification is independent 
of the relaxation time as long as o)cr> 1. This expression 
is displayed in Fig. 2 for cor== 10 and fi= — 2. 

For extrinsic semiconductors, using (4.5), (4.7), and 
(2.20), we find that the absorption coefficient is 

«;= 
1 NotnirVF 

12 pv8 

(CXj/mvs
2)2(o)/o)PYq^ R e coth(7rX/wcr) 

X- zi+i(v./vFnw<*p)*y 
(4.10) 

where we have neglected terms of higher order in 1/ql. 
In this case, as in semimetals, we get Doppler-shifted 
cyclotron resonances under conditions of amplification 
when vH>vs. Both (4.9) and (4.10) reduce to the ordi­
nary cyclotron resonances when fl#=0. 

V. DISCUSSION 

In our calculations, we have found that geometric 
resonances and cyclotron resonances in the sound-wave 
intensity can occur under conditions of amplification. 
This happens when the drift velocity imparted to the 
conduction electrons in the crossed electric and mag­

netic fields is greater than the sound velocity. Under 
these conditions, the conduction electrons can radiate 
phonons in analogy with the Cerenkov radiation of 
light in a medium. This analogy has been developed in 
more detail by Eckstein9 who pointed out that there 
would be a resonant transfer of energy between the 
electrons and the sound wave when the energy de­
nominators which appear in the conductivity tensors 
vanish. When the phonon frequency is of the same order 
of magnitude as the cyclotron frequency, this vanishing 
of the energy denominator leads to cyclotron resonances. 
The frequency at which this cyclotron resonance occurs 
is Doppler-shifted from its value in zero dc electric 
field because the electrons now have an average drift 
velocity in the direction of propagation. When the 
cyclotron frequency becomes much larger than the 
sound frequency, the vanishing of the energy denomi­
nators can only occur when a>—q-v#=0. Then, the 
electrons drifting in the direction of propagation under 
the influence of the crossed fields are moving in phase 
with the sound wave and we get a resonant transfer of 
energy. We see that we get maxima in both the attenua­
tion and the amplification which occur when this condi­
tion is satisfied in the limit of infinite relaxation time. 
When the electrons have a finite relaxation time, the 
maxima move away from the position of the resonance. 
When cor<Cl, the resonance is damped and the maxima 
will not occur at attainable values of the electric field 
conducting solids. In this case, the amplification in­
creases linearly with dc electric field and resonant be­
havior is not observed. When C07CM, the positions of 
the maxima move to the position of the resonance. This 
is similar to what happens to the resonances in the 
tilt effect.23 

Another way of seeing how this resonance condition 
arises is to look at the laws of conservation of energy 
and momentum in the electron-phonon interaction. 
These conservation laws are satisfied when the fre­
quency denominators vanish. However, to have the 
energy of a phonon defined in this interaction, the 
phonon energy fiu, must be greater than fi/r because 
of the uncertainty principle. Rewriting this in terms of 
the phonon frequency gives us the condition cor> 1, for 
observing the resonance behavior. 

The occurrence of geometric resonances and cyclotron 
resonances in the amplification presents the possibility 
of studying these effects under more favorable circum­
stances than is possible at present. For cyclotron reso­
nance, we require cor> 1, and at frequencies high enough 
to satisfy this condition, the attenuation is usually to 
large to measure anything conveniently. Under condi­
tions of amplification, however, this problem would not 
arise. We would only get large amplification factors at 
the points where the resonances occur for cor^>l. 

Because the maximum amplification increases with 
frequency, we would be able to obtain high-intensity 

23 H. N. Spector, Phys. Rev. 120, 1261 (1960). 
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acoustic waves in the high-frequency region. In these 
higher frequency ranges, we can only generate low 
intensity acoustic waves by other methods.24 

The mechanism discussed in this paper for amplifying 
sound waves in a magnetic field can only be applied in 
semimetals and semiconductors. In metals, the conduc­
tivity is too high to obtain the dc electric fields needed 
to cause VH to exceed v8. Also, we would have very large 
amounts of power to dissipate in metals. In semimetals 
and semiconductors, on the other hand, the lower 
carrier densities allow us to obtain the necessary dc 
electric fields in the material and the amount of power 
dissipated becomes more reasonable. 
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APPENDIX 

The integrals that occur in (2.10a)-(2.10c) are similar 
but more complicated than the integrals that usually 
occur when considering the wave number and frequency 
dependence of the conductivity tensor in magnetic 
fields.10 Since the Txx component of the conductivity 
tensor is the most important component in our calcula­
tion, we will evaluate it explicitly. The other com­
ponents of T and R can be evaluated in a similar 
fashion. 

Using the condition cocr^>l, and the equations of 
motion of the electrons, (2.22), we can write Txx=axx 

+2XX in the form 

TXX= — e2 I d\vx I ds e~~u,T exp i—(vy'—vy) 

o / V \1 
X 

dE dE2 
(Al) 

where we have used the change of variable, s=t—t'. We 
can rewrite the product, vj exp(iXvu'/vF), as 

vx exp(iXvy/vF) 
= - (l/iq)Z(d/ds)+iqvH~] exp(iXvy'/vF) (A2) 

and integrate (Al) by parts. This together with the 
relation 

Vy exp (iXvy'/v F) = — WF (d/dX) exp (iXvy'/vF) (A3) 
24 H. E. Bommel and K. Dransfeld, Phys. Rev. Letters 1, 234, 

(1958); 2, 298 (1959); 3, 83 (1959). E. H. Jacobsen, ibid. 2, 249 
(1959); N. S. Shiren, ibid. 6, 168 (1961). 

allows us to do the integration over s in (Al). We now 
obtain 

Txs=-<?ldYvs\ l—e-iXvyiw3(6y<l>) 
J [iq 6EL T J 

mvH d2f0\ 

iq dE2\ 

X 

f l 

(fly/«CT) — T>*—-—\-e~ iXvy ,VF 

L iqr 

X (—+(l-ia>r)(i— —+vx))*(6,*)\\ , (A4) 
\iqT \o)crdX // J J 

where 

*(*,*) ds e~u,T exp—i~ 
VF 

X \j sin0 s i n facS—0) ~ VH sinews]. (A5) 

This can be evaluated by noting that21 

+00 

expzzsin^= X) ein*Jn(z). 
7 l==—CO 

Then we have 

+oo ein*Jn{Xv sHnd/vF)Jm(XvH/vp) 
*(0,0) = T £ _ , 

«,w=-oo \Sri(jl—. m)0)cT 

(A6) 

(A7) 

The integration over the angular coordinates 6, <t> 
can be done using the same kind of relations. We end 
with the functions gn(X), and their derivatives after 
using (2.21a)-(2.21b). Using the definition of the func­
tions, gn(X), we find that 

gn'(X)=(l/X)l/tn(2X)Tgn(X)2 
gn"(X)=(2/X)tAn'(2X)-gn'(X)J 

(A8) 

The use of these relations allows us to write Txx in the 
form (2.23). We can evaluate the integrals that occur in 
the other components of the conductivity tensor in an 
analogous manner. 

It can be seen directly that the summation, 

+00 

\ VF/ 

can be obtained from (A6), by setting ^ = 0 . The 
summation, 

+oo / vH\ VH 

E tnJjX—) = X—, 
\ vFJ vF 

can be done by taking the derivative with respect to if/, 
of both sides of (A6), and then setting ^ = 0 . 


